ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013. M.Tech. (EXPLORATION GEOSCIENCES)

COURSE CODE: 306

Signature of the In (with date)		•		•		 	Registe
Signature of the In (with date)					,		
Signature of the In (with date)				•	•	٠	
	Invigilator	Signature of the In (with date)	٠.				
		·					

COURSE CODE : 306
Time : 2 Hours

Instructions to Candidates:

1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.

Max: 400 Marks

- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	One	of the following types of ore deposits i	s form	ned on the sea floor.
	(A)	sedimentary exhalative	(B)	carbonate-hosted Pb-Zn
	(C)	sandstone type U	(D)	unconformity type U
2.		at is common to Nausahi ultramaf plex?	ic cor	nplex and Sittampundi anorthosit
	(A)	Nickel sulphide and PGE	(B)	Chromite and PGE
	(C)	Chromite and Nickel sulphide	(D)	Nickel sulphide
3.	Cho	ose the odd pair of primary and second	ary co	opper minerals.
÷	(A)	chalcopyrire – chalcocite	(B)	chalcopyrite – covellite
·	(C)	chalcopyrite – cubanite	(D)	chalcopyrite · malachite
4.	Hon	nogenization temperature of primary fl	uid in	clusions in a mineral gives the
	(A)	lower limit of temperature of crystall	izatio	n of the mineral
	(B)	upper limit of temperature of crystall	lizatio	on of the mineral
•	(C)	temperature of crystallization of the	miner	al
	(D)	pressure during crystallization of the	mine	ral
5.	Iden	ntify the wrong pair of host rock and as	sociat	ed ore mineral.
	(A)	granite pegmatite – psilomelane		
	(B)	komatiite – pentlandite		
	(C)	lamproite - diamond		
	(D)	skarn – scheelite		
6.	One	of the following is the common host fo	r ore c	deposits of REE.
	(A)	sedimentary carbonate formation	(B)	carbonatite
	(C)	komatiite	(D)	kimberlite
7.		ne of the following list, manganese ore ease in temperature of crystallization.	mine	rals are correctly arranged in order o
	(A)	bixbyite - hausmaanite - pyrolusite	(B)	hausmannite – pyrolusite – bixbyite
	(C)	pyrolusite – bixbyite – hausmannite	(D)	· pyrolusite - hausmannite - bixbyite
8.	Eva	porite bed is known from one of the foll	lowing	g Proterozoic sedimentary basins.
*	(A)	Cuddapah (B) Vindhyan	(C)	Marwar (D) Bhima

9.	Car	bonate formations	of Aravalli Superg	group hos	st large deposits	of		
5. " '4	(A)	Cu and Pb-Zn		(B)	Pb-Zn			
	(C)	Pb-Zn and phospl	norite	(D)	phosphorite			
10.	Chr	omite is the chief owing ore forming p	economic minera	l of Chr	omium. They a	re forr	ned be	cause of
	(A)	Early magmatic s	egregation of crys	stals	· ·			
	(B)	Late magmatic hy	ydrothermal proce	88				
	(C)	Sulfide liquid imp	niscibility			4		
	(D)	Supergene oxidat	ion process			•		
11.	Porp	ohyry type Cu depo	sits are associated	d with fo	llowing type of a	magma	atic int	rusions
	(A)	Calc-alkaline oxid	lised (magnetite b	earing)	I-type granite in	itrusio	ns .	
	(B)	Calc-alkaline red	uced (ilmenite bea	aring) S-	type granite int	rusion	S	
	(C)	Mafic-intermedia			•			
	(D)	Ultramafic compo	sition					
12.		ch one of the fo	llowing sulfide i	mineral	is translucent	and	show	internal
	(A)	Galena (B) Chalcopyrite	(C)	Pyrrhotite	(D)	Sphal	erite
13.	Orea	s of Li, Be, Cs assoc	ciated with					
	(A)	Gabbro		(B)	Diorite			•
	(C)	Granite-pegmatit	e pluton	· (D)	Acid volcanic r	ocks		
14.	Whi	ch of the following	oxide mineral is n	nore like	ly to form place	r depo	sit?	
	(A)	Magnetite (B) Pyrolusite	(C)	Cassiterite	(D)	Schee	lite
15	Cha depo	lcocite-covellite-bor osit	nite mineral asse	mblage i	s characteristic	s of fol	lowing	type Cu
	(A)	Magmatic sulfide	deposit					
	(B)	Porphyry type dej	posit					
	(C)	Supergene enrich	ment type deposit	ts				
	(D)	Volcanogenic mas	sive sulfide depos	sit	,			
16.	dom and	sedimentary succe inated meandering finally overlain by onic setting for the	fluvial facies gra conglomerate do	ades to s ominated	and dominated I alluvial fan fa	braide	d fluvi	al facies
	(A)	Regressive passiv	e continental mar	gin(B)	Post orogenic f	orelan	d basin	ı
	(C)	Back arc basin		(D)	Pull apart basi	n		

		·		
17.	Hur and	nmocky cross stratification is a produ they are generally formed in following	ct of a	storm induced unidirectional currensitional areas of a marine basin
	(A)	Outer shelf region	(B)	Inner shoreface region
	(C)	Outer shoreface region	(D)	Foreshore region
18.	Gra	ywacke-shale assemblage is characteri	istics c	of following tectonic setting
	(A)	Foreland basin	(B)	Active continental margin
	(C)	Passive Continental margin	(D)	Intracratonic basin
19.	The	wilting point of the soil occurs when:		
	(A)	Surface tension of the soil-water inte	rface l	higher than osmotic pressure
	(B)	Surface tension of the soil-water inte	rface l	ower than osmotic pressure
	(C)	Surface tension of soil water interfac	e equa	ls osmotic pressure
	(D)	No change in surface tension and osr	notic p	pressure
20.		ratio of volume of water that drains fr ravity to the total volume of the rock is		
	(A)	Specific yield	(B)	specific retention
	(C)	Storage capacity	(D)	Storage coefficient
21.	The	term base flow is used when:		
	(A)	Groundwater contributes to stream	(B)	Stream contributes to groundwater
	(C)	Flow due to excess rainfall	(D)	Flow from the streams
22.	unit	measure of the amount of water that width by the full saturated thickness known as:	can b of the	e transmitted horizontally through a aquifer under a hydraulic gradient o
	(A)	Transmissivity	(B)	Storativity
	(C)	Permeability	(D)	Porosity
				·

23. Identify the spring type from the given diagram:

- (A) Depression spring
- (B) Contact spring
- (C) Joint spring
- (D) Fault spring

24.		process by which igher concentrat			_		vater m	ove from areas
	(A)	Diffusion	(B)	Advection	(C)	Dispersion	(D)	Retardation
25.		release of molec			ne solid	phase to solute	e causir	ig groundwater
	(A)	Retardation	(B)	Desorption	(C)	Sorption	(D)	Adsorption
26.	The	log used to meas	sure t	he diameter of t	he bore	hole is known	as:	
	(A)	Dip meter log	•		(B)	Sonic log		
	(C)	Temperature le	og		(D)	Caliper log		•
27.	Peri	neable part of th	ie casi	ng in a bore-we	ll is kn	own as:		
	(A)	Well screen	(B)	Filter pack	(C)	Grout	(D)	Well points
28.	The	dominant forms	of mi	crofossils in the	abyssa	ıl region are		
	(A)	Radiolarians	(B)	Foraminifers	(C)	Ostracods	(D)	Diatoms
29.	In c	losed-packed ion	ic crys	stal, ratio of tet	rahedra	al sites to octab	edral s	ites is
	(A)	1: 2	(B)	2:1	(C)	3:1	(D)	1:1
30.	bull	tial melting of a distribution coent of melting?						
	(A)	5 %	(B)	10%	(C)	50%	(D)	1%
31.	Whi	ch of the followi	ng ele:	ments is classif	ied as h	nigh field streng	gth elen	nent?
	(A)	Rb	(B)	Ва	(C)	Ag	(D)	Nb
						· ·		
32.	Whi	ch of the followi	ng bel	ongs to the orde	er 'Dibr	anchia' of the (Cephalo	poda?
	(A)	Orthoceras	(B) ·	Nautilus '	(C)	Belemnites	(D)	Bacculites
33.	The	first vertebrates	appe	ared during	,			
	(A)	Cambrian	(B)	Ordovician	(C)	Silurian	(D)	Devonian

34. Identify the type of facial suture of a trilobite cephalon in the given diagram

- (A) Proparian
- (B) Opisthoparian (C)
- Gonatoparian
- (D) Hypoparian

- 35. Taphonomy is the
 - (A) study of the conditions of preservation of fossils
 - (B) reconstruction of paleoemvironments by means of fossils
 - (C) study of types of fossils
 - (D) study of fossil pollens and spores
- 36. Which of the following is NOT a living fossil?
 - (A) Lingula
- (B) Nucula
- (C) Nautilus
- (D) Numulites

- 37. Trace fossils are best preserved in
 - (A) sandstones
- (B) limestone
- (C) shale
- (D) marl

- 38. The immediate ancestors of the mammoths were
 - (A) Stegodon
- (B) Mastodon
- (C) Laxodont
- (D) Phiomia

39.		given geological is having no tect				-			
	(A)	3	(B)	4	(C)	5	(D)	2	
40.	In t	he above success:	ion, a	disconformity o	ccurs l	oetween			-
	(A)	Granite Gneiss	- Red	l Sandstone	(B)	Limestone -	Red Sha	le	
	(C)	Red Shale - Arl	cosic	Sandstone	(D)	Granite Gne	iss - Ort	hoquartzite	
41.	Gre	nvillian orogeny :	is rela	ated to		superconti	nent for	mation.	
	(A)	Pangea	(B)	Rodinia	(C)	Gondwana	(D)	Columbia	
42 .	Age	s Lutetian, Ypres	sian a	nd Barterian be	longs	to			
	(A)	Cambrian	(B)	Eocene	(C)	Triassic	(D)	Proterozoio	3
43.	_	rioclase feldspar e been formed as	-	and the second s	w nor	mal composition	nal zoni	ng which co	uld
	(A)	equilibrium cry	stalli	zation		•			
	(B)	magma reaction	n witl	n plagioclase xer	ocryst	8			
	(C)	disequilibrium	crysta	allization					
	(D)	plagioclase read	cting	with diopside			•		
44.	Mag	mas formed in is	land-	arc tectonic sett	ing ar	e depleted in t	he trace	element	
	(A)	Sr	(B)	Nb	(C)	Се	(D)	Zr	
45.	km	mas R and S bo and 120 km resp mantle is 3300 k	ective	ly. Assuming th	at den	sity of contine		-	
	(A)	R and S erupt a	ıs lav	as on continent					
	(B)	R and S will int	trude	continental crus	st				
	(C)	R intrudes and	S for	ms Lava					
	(D)	R forms lava ar	nd S i	ntrudes			•		•
46 .	Pres	sence of diamond	s in k	imberlite signifi	es tha	t its magma			
÷	(A)	formed from C-	rich r	nantle source					
	(B)	assimilated C-b	earin	g sediments				•	
	(C)	formed at conti	nenta	l crust–mantle l	bounda	ary			
	(D)	formed at press	ure >	3 GPa					

47.	The	e number of crystal	classes (p	oint groups	s) in (the tri	clinic system are
	(A)	2 (B) 3		(C)	4	(D) 6
48.	Whi lith	ch of the following espheric plate and o	would be oceanic lit	expected t hospheric p	o res	ult fro	m the collision of a continental
•	(A)	A volcanic island	arc				
•	(B)	A chain of coastal	volcanic	mountains			
	(C)	Mid oceanic ridge		,	-		
	(D)	Transform fault					
49.	Whi data		paramet	er is uniqu	ely r	esolve	ed by residual gravity anomaly
٠	(A)	lateral density co	ntrast		(B)	abso	lute density
	(C)	excess/ deficit ma	ss		(D)	shap	e of the body
5 0.	The	source of magnetic	anomalie	s extend up	oto		
	(A)	upper mantle			(B)	lowe	r mantle
	(C)	core-mantle boun	dary		(D)	curie	point isotherm
51 .		commonly used to		al method	of e	xplora	ation in delineating the deep
	(A)	seismic reflection			(B)	seisn	nic refraction
	(C)	resistivity			(D)	indu	ced polarization
52 .		Mohorovicic discon below the Indian (ogen is at a depth greater than
	(A)	isostatic mass adj					
		lateral density va					· · · · · · · · · · · · · · · · · · ·
	(C)	upwelling materia					
	(D)	less tectonic activ	ity in the	Himalayan	regi	on.	
53.	The	electrical method u	sed for p	rospecting	of dis	semir	ated ore is
	(A)	induced polarizati	on		(B)	self r	ootential
	(C)	Electromagnetic			(D)	resis	tivity
54 .	The pole		ensity is _		at t	he equ	nator and at the
	(A)	Minimum, minim	um		(B)	mini	mum , maximum
	(C)	maximum, minim	um		(D)	maxi	mum, maximum
306				8			

55.	in magnetic punits of	rospecting, the	strength o	of magn	etic field is	commonly e	xpressed in
	(A) mGal	(B) nai	no tesla	(C)	N/m^2	(D) gr	n/cm³
56.	In which of the	following island	ls mid-oce	anic rid	ge is exposed	above sealev	vel?
	(A) Japan	(B) Sea	chelles	(C)	Hawaii	(D) ice	eland
57 .	The velocity of	seismic waves v	aries thro	ugh Ear	th because		
	(A) Tempera	ture varies with	in the eart	h			
	(B) Density v	aries within the	earth	,			,
	(C) the comp	osition of rocks	varies wit	hin the	earth		
	(D) all of the	se ·	•				
58 .	Median valley	is generally four	id in		-		
	(A) Fast spre	ading mid ocear	ic ridges	(B)	Slow spread	ing mid ocea	nic ridges
	(C) Fracture	zones in oceans		(D)	Oceanic plat	teau	
59.		basal conglomes that the sedin				ging from 3	300 to 2500
	(A) before 33	00 Ma ago		(B)	3000 to 2500) Ma ago	
	(C) 3300 to 3	000 Ma ago		(D)	After 2500 N	Ma ago	
60.	The reason for	magma generat	ion in isla	nd-arc s	etting is due	to	
	(A) decrease	in pressure		(B)	frictional hé	ating	-
	(C) influx of t	luid		(D)	mantle conv	ection	
61.	A vertical aeria	al photograph ha	ıs tilt angl	le betwe	en		
	(A) 0°-3°	(B) 3°	30°	(C)	30° - 60°	(D) >6	60°
62.	The datum use	d for surveying	an area is	3	•		
	(A) Mean Sea	ı level		(B)	Bench mark	:	·
	(C) Triangula	tion point		(D)	None of the	above	
63.	A 2D GPS give	s	of any lo	cation			
	(A) latitude a	nd longitude		(B)	latitude, lon	gitude and e	levation
	(C) longitude	and elevation		(D)	latitude and	elevation	•
64.	A clear, deep w	ater body on a f	alse coloui	r compo	site will appe	ar as	
	-	(B) ore					d.

65 .	Plot	of the spectral	reflecta	ince against t	he wavel	ength is called		<u></u> .
	(A)	spectral signs	iture	, •	(B)	spatial signat	ure	
	(C)	emission spec	tra		(D)	radiation		
66.		cipal point of a				letermined by	the inte	rsection point
	(A)	nadir point			(B)	isocenter		*
	(C)	fiducial mark	s		(D)	all of the abov	⁄e	
67.	Opti	ical remote sen	sing ope	erates in	v	vave-length reg	ion.	
	(A)	$0.4-0.7\mu m$,	(B)	$0.4-0.9~\mu m$		
	(C)	$0.9-1.5\mu m$			(D)	0.4 - $2.5\mu m$		
68.	ratio	r different min o of ⁸⁷ Sr/ ⁸⁶ Sr bu erals are analy:	it differ	ent ratios of ^t	⁸⁷ Rb/ ⁸⁷ Sr.	After 2 Ga of o		
	(A)	same and und	hanged	ratio of 87Sr	/86Sr.			
	(B)	same ⁸⁷ Sr/ ⁸⁶ Sı	ratio l	out higher th	an the ini	tial		•
	(C)	different 87Sr	/86Sr ra	tios, higher t	han the ir	nitial		
	(D)	Same 87Sr/86S	r ratio l	out lower tha	n the init	ial		
69.	In a	n X-ray diffract	tion pat	tern of a min	eral			
	(A)	peaks at smal	ller 2θ a	ingles corres	ond to pl	anes with sma	ller d-sp	acing
•	(B)	peaks at smal	ller 20 a	ingles corres	ond to pl	anes with larg	er d-spa	cing
	(C)	peaks at smal reflection pea		ingles are dif	fraction p	eaks while pea	ks at la	ger angles are
	(D)	peak-heights	are pro	portional to t	he d-spac	ing.		
70.		ze of a cation is can simultane					, the nu	mber of anions
	(A)	2	(B)	4	(C)	6	(D)	8
71.	The	deposits laid d	own-slo	pe of a breac	h in natu	ral levee are te	rmed as	:
	(A)	Point Bar dep	osits		(B)	Crevasse-Spl	ay depos	its
	(C)	Channel Lag	deposit	8	(D)	Fan deposits		
72.		maximum sedi am's:	iment s	ize entrained	and tran	sported by a s	tream is	termed as the
	(A)	Capacity	(B)	Load	(C)	Grade	(D)	Competence

- 73. Which of the following shows a positive relationship with stream order:
 - (A) Total number of streams
- (B) Stream gradient

(C) Drainage density

- (D) Total length of streams
- 74. In the context of landforms developing on stratified rocks, choose the correct sequence in the order of increasing dip of the strata:
 - (A) Mesa Hogback Cuesta
- (B) Mesa Cuesta Hogback
- (C) Cuesta Mesa Hogback
- (D) Hogback Cuesta Mesa
- 75. In the Strahler's stream ordering scheme, when two tributaries of different orders, (i) and (i+1), join together, the order of the resultant stream is equal to:
 - (A) i
 - (B) i+1
 - (C) i+2
 - (D) 2i+1
- 76. Which of the followings moves along the coastline?
 - (A) Longshore current

(B) Swash and Backwash

(C) Rip current

- (D) Breaker
- 77. In the figure given below, which of the following statements on exchange of water between river and groundwater is correct (GW = Groundwater):

- (A) river is losing to groundwater
- (B) river is gaining from groundwater
- (C) river is losing in the downstream region
- (D) river is losing in the upstream region

78.				rectly depicts th avel from a hill-				
	(A)	Overland flow	– Inte	erflow – Baseflov	v			
	(B)	Overland flow	– Bas	eflow – Interflov	Ÿ			
	(C)	Baseflow - Inte	erflow	– Overland flov	v			
	(D)	Inteflow – Ove	rland	flow - Baseflow		,		
79.	Нур	sometric Integra	al app	roaches 1 for:		•		
	(A)	Rugged mount	ains		(B)	Plateau with	a few d	eep valleys
	(C)	Lowlands with	a few	hills	(D)	Flat plains		,
80.	Whi	ch of the followi	ng roc	ks possess highe	er amo	unt of primary	porosit	y? ´
	(A)	sandstone	(B)	claystone	(C)	limestone	(D)	siltstone
81.	Whi	ch group provide	es the	fast moving inv	ertebra	ate?		
	(A)	cephalopoda	(B)	echinodermate	a (C)	gastropoda	(D)	brachiopoda
82.	Whi	ch rock type ma	kes a	good cap rock fo	r oil ar	nd gas reservoir	:s?	
	(A)	Conglomerate	(B)	Limestone	(C)	Sandstone	(D)	Shale,
83.	Why	don't calcareou	s sedi	ments form in t	he deep	p oceans?	-	
	(A)	It is too cold				*		
• .	(B)	There is no sur	nlight	for growth				-
•	(Ċ)	Calcium carbo	nate d	lissolves at grea	t deptl	ns	•	
	(D)	There is no oxy	gen					
84.	Bay	s and headlands	are g	enerally found i	n shor	eline of	,	•
	(A)	submergence	(B)	emergençe	(C)	neutral	(D)	faulted
	D : 0	r Z-shaped inclu	sion t	rails in garnets :	indicat	te		
		Syn-tectonic ci	ystal	lization	(B)	Pre-tectonic	rystalli	ization
		tonic c	rysta	lization	(D)	None of the a	bove	
			ng ste	teme nts about 1	netam	orphism of a sh	ale is f	alse?
			ig=14	tamorphism, the	_			
,	1			norphism, the	grain	size of the mine	erals ge	ts smaller
				hism, folia	ation d	evelops	÷	
	-1			him, the	amour	nt of water decr	eases	,

The second secon

87.	An o	verturned fold is	char	acterized b	у		·		
	(A)	two limbs at rig	ght ar	igles to one	anoth	er			, .
•	(B)	two limbs dippi	ng in	the same	direction	n - w	ith one tilted bey	ond v	ertical
	(C)	two limbs dippi	ng in	opposite d	irectio	ns			
	(D)	two limbs not p	àralle	el to each o	ther				
88.	How	do rock particle	s mov	e during t	he pass	age o	of a P wave throu	gh th	e rock?
	(A)	back and forth	paral	lel to the d	irectio	n of w	ave travel		
	(B)	back and forth	perpe	ndicular to	the di	rectio	on of wave travel		
	(C)	in a rolling circ	ular r	notion					÷
	(D)	the particles do	not r	nove					
89.	Hyd	rothermal metan	norph	ism is ver	y comn	on in	which of the foll	lowing	g settings?
	(A)	at continental c	ollisi	on zones	_	(B)	along shallow f	aults	
	(C)	at mid-ocean ri	dges			(D)	in mid-continer	ıtal re	gions
90.	Fore	eland basins are	associ	ated with					
	(A)	crustal extension	n	•		(B)	strike slip fault	s	
	(C)	thrust loading				(D)	thermal contrac	ction	
-									
91.	Stru	ictural classificat	ion of	f silicate m	ineral	s is ba	ised on		,
	(A)	crystal symmet	٠.						
	(B)	X-ray diffraction							
	(C)	extent of sharin	-						
	(D)	extent of sharin	g of c	orners am	ong oct	ahed	rons	,	
92.	Cora	al reefs are gener	ally f	ound in					
	(A)	polar region				(B)	sub polar region	n	
	(C)	tropical region				(D)	all regions		
93.	The	crystal class 432	has t	he followi	ng rota	tiona	l axes of symmet	ry	÷
	(A)	four 4-fold, thre	ee 3-fo	old and two	2-fold	axes			
	(B)	three 4-fold, for	ır 3-fa	old and six	2-fold	axes			•
	(C)	four 4-fold, six	3-fold	and two 2	-fold a	ces			
	(D)	three 4-fold, tw	o 3-fo	ld and six	2-fold	axes			
94.	The	space group P412	2 ₁ 2 ha	s how man	ny scre	w axi	s?		
	(A)	One	(B)	Two		(C)	Three	(D)	Four

	(A)	One	(B)	Two	(C)	space group Three	(D)	Four	
	(A)	One	(D)	1 W U	(0)	Turee	(D) ·	rour	•
96.		h order inter rizing micro			ved for star	ndard thinsec	ctions of m	inerals ui	ıder
	(A)	high refrac	tive indice	es	(B)	strong pleod	chroism		
	(C)	strong disp	ersion		(D)	large differe	ence in ref	ractive ind	ices
97.	Qua	rtz and nepl	neline can	be disting	uished with	aid of polariz	ing micros	scope using	3
	(A)	optic sign			(B)	extinction a	ngle		
	(C)	interferenc	e color		(D)	relief			
	of or (A)	paque miner Andesite	als. The n (B)	ame of the Basalt	rock is (C)	Gabbro	(D)	Norite	
99.	The		enocrysts	in the al	, .	have corrode			by
	(A)	exsolution	of orthopy	roxene	(B)	resorption o	of orthopyr	oxene	
	(C).	subsolidus	reaction		(D)	peritiectic r	eaction		
				op of mafi	c dikes is g	iven. Each o	f the dike	s show ch	illed
100.	mar	gm on one si	ide of com	acto cirij.			<u></u>		

(A) sheeted dike complex

(B) mafic intrusive complex

(C) dike swarm

(D) differentiated dike complex